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IV. A general Method of Calculating the Angles made by any
Planes of Crystals, and the Laws according to which they are
formed. By the Rev. W. WHEWELL, F.R. 8. Fellow of
Trinity College, Cambridge.

Read November 25, 1824.

1. IT has been usual to calculate the angles of crystals
and their laws of decrement from one another, by methods
which were different as the figure was differently related to
its nucleus; which were consequently incapable of any
general expression or investigation, and which had no con-
nexion with the notation by which the planes of the crystals
were sometimes expressed. And the notation which has
hitherto been employed, besides being merely a mode of
registering the laws of decrement, without leading to any
consequences, is in itself very inelegant and imperfect. The
different modes of decrement are expressed by means of
different arbitrary symbols; and these¢ are combined in a
manner which in some cases, as for instance in that of in-
termediary decrements, is quite devoid both of simplicity
and of uniformity, and indeed, it may be added, of precision.
The object of the present paper is to propose a system which
seems exempt from these inconveniences, and adapted to
reduce the mathematical portion of crystallography to a
small number of simple formule of universal application.
According to the method here explained, each plane of a

[ ft?
)
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%

Philosophical Transactions of the Royal Society of London. STORM

www.jstor.org



88 Mr. WHEWELL on calculating

crystal is represented by a symbol indicative of the laws
from which it results; the symbol, by varying the indices
only, may be made to represent any law whatever: and by
means of these indices, and of the primary angles of the
substance, we obtain a general formula, expressing the
dihedral angle contained between any one plane resulting from
crystalline laws, and any other. In the same manner we can
find the angle contained between any two edges of the derived
crystal. Conversely, knowing the plane or dihedral angles
of any crystal, and its primary form, we can by a direct and
general process deduce the laws of decrement according to
which it is constituted. The same formula are capable of
being applied to the investigation of a great variety of pro-
perties of crystals of various kinds, as will be shown in the
sequel. We shall begin with the consideration of the rhom-
boid, and the figures deduced from it; and we shall after-
wards proceed to other primary forms.

§ 1. The Rhomboid.

2. Let there be a rhomboid, A g, Fig. 1. divided into a num-
ber of small equal rhomboids by planes parallel to its faces.
Let any one of the points of division of each of its three upper
edges be taken, as P, Q, R ; and leta plane pass through these
three points P, Q,R. Let the small rhomboids which are above
this plane be removed, so as to leave a uniform assemblage
of cavities. Then, the remaining surface P Q R, being com-
posed of the trihedral angles of small rhomboids, if we sup-
pose the small rhomboids to become smaller than the least
distinguishable magnitude, the surface P QR will appear a
plane. And if we suppose these rhomboids to represent the
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primary form of a crystalline body, P QR will be a secondary
surface deduced from a certain arrangement of these primary
elements.

Let the three upper edges of the rhomboid, Az, Ay, Az,
be considered as three axes of co-ordinates ; and let the cor-
responding co-ordinates be x,y,z. We can then express
the plane P Q R by means of these co-ordinates. If, for in-
stance, we consider an edge of the small rhomboid as unity,
and if AP, AQ, AR contain respectively 9, 6, and 3 of these
edges, the equation to the plane P, Q, R, will be

%+%+%=u
and if the numbers of small rhomboids in AP, AQ, AR be
respectively &, k, /, the equation to the plane will be
FHE+ =1

If &, %, / be multiplied by any common quantity m, so that

the equation becomes
iz+7—%+%=1,or%+%+ff=m,
it is clear that the plane P QR will continue parallel to its

former position, and may be considered as deduced from the
same law as before. Hence it appears, that in the equa-

tion = 4 £ 4 —zl— == m, the quantity m does not serve to de-

termine the position or law of formation of the plane, and
may be any whatever. If we make m =0, the plane PQR,
still continuing parallel to its former position, will pass
through the point A; and as we have to consider only the
angles made by planes and their intersections, we may in
such calculations suppose all our planes to pass through this
point A,
MDCCCCXXV. N



90 Myr. WHEWELL oz calculating

Since therefore the direction of the plane PQR is com-
pletely determined by the three quantities 4, &, /, we may re-

T T
or, if the equation be pz 4 qy 4 rz =m, we > may represent
the plane by the symbol (p; ¢; ).

8. According to the law of symmetry which prevails in
the production of crystalline forms, if one edge or face of the
primary solid be modified in any manner, the other homo-
logous edges and faces will be similarly modified. Hence, if
one plane exist, other corresponding planes must also exist,
and these we may call co-existent planes to the first.

Thus if we have a plane P QR, Fig. 2, and if we take
AP = AQ, and AQ' = AP, we must also have a plane
PQR: for the edges Az, Ay being perfectly similarly
situated, if one of them be affected in any manner, the other
must be similarly affected. Hence, if we have a plane
(p; q;r), we must have one (¢g;p;r). The same is also
true of z; and by considering this in the same manner, it
will be seen that the plane (p; q; r) has the following co-
existent planes

(g3257) (r595p) (p3739) (g5732) (73585 9).
That is, there are all the permutations that can be made by
altering the arrangement of the three quantities p, ¢, 7; that
the one which stands first in order being always the coefficient
of @, the second that of y, and the third that of z.

These six planes may be represented by a single symbol

present it by writing those three quantities thus ( - ) P

* We might represent the plane by (4; % ; I), which shows more immediately the
law of its formation; but in all our subsequent calculations we have to use the re-
ciprocals, and hence our formulz are simplified by using the symbol (p; ¢; r) where
P> ¢, r are the coeflicients of the equation.
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(p»q,7); it being understood, that when quantities are only
separated by commas, they are to be taken in all the ways
in which they can be permuted. In the same manner
(p,q; ) may represent the two planes (p,q;7) (¢,257),
the permutations not extending to r, which is separated by a
semicolon. In the case of the rhomboid, however, the per-
mutations always include all the three quantities, in conse-
quence of the similarity of its three edges.

4. We have hitherto considered only the planes produced
by cutting off the upper angle ; but we may represent in the
same manner the plane produced by truncating any other
angle. It may be observed that the angles @,y,%, fig. 3,
which are separated from the superior angle A by an edge,
are called lateral angles. The angles 2/, y, &, which are
separated from A by a diagonal, are called inferior angées.

Let p g 1, fig. 3, be a plane produced by a truncation at the
lateral angles: ap, zq, xr being &, k, / respectively. Produce
r A beyond A, and take AP = xp, AQ == zq, AR=uar; then
the plane P QR will be parallel to pqr, and may be taken
instead of it. Now it is manifest that the equation to this

plane is — S+ T+ 5=1
and therefore its symbol is (_..—h'-, = —;—) Or if p=—,

g = +,7= 7, the equation is — p 7 4 qy 47z =m, and the

symbol (—p;¢q;7). Hence a plane which cuts off the
lateral solid angles is distinguished by having one negative
index. v

In the same manner let pqr, fig. 4, cut off an inferior
angle ', so that &' p==h,2'q=#, 2'r==/: and taking
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AP=2'p, AQ=1'q, AR=2'r, the plane PQR will be
parallel to p ¢ 7, and its equation will be

Tt i =15 0rpr—qy—rr=1:
and its symbol (L""%?"'“T) or (p;—q;—r;). Hencea

plane which cuts off the inferior solid angles is dlstlngulshed
by having two negative indices.

It may be observed, that in both these cases the coexistent
planes are given by taking the permutations of p, ¢,7; and
may be represented as before by (—p,q,7)and (p,—q;—7).
There will in each case be six ; two for each angle.

5. If one of the quantities AP, AQ, AR, or A, %, /, in any
of these cases become infinite, we shall have a truncation of
an edge of the rhomboid. Thus if AP, in fig. 2, become in-
finite, we have a plane cutting off the terminal edge A x, -

fig. 5. And since % is infinite, if ¢ =—-, r = -—, the equation

of this plane is gy 4 7z ==1; and its symbol (o5¢9;7).

In the same manner, making ' infinite in fig. 4, we have,
for a plane truncating the lateral edge z’y, an equation
px —=qy==1, and a symbol (p; —gq;o0).

The terminal edges of Az, Ay, Az, are not similarly
affected with the lateral edges zy, ' 2, z2', 2y, y2/, ' .

6. Instead of supposing the secondary faces to be produced
by removing a part of the rhomboid A 4, we may conceive,
with Havy, that this larger figure is composed by adding
successive layers of the small component rhomboids to a
rhomboidal nucleus; and that the secondary faces are pro-
duced by supposing the magnitude of these layers to de-
crease according to any law. And it will be easy to show
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what symbols, according to the notation here proposed, cor-
respond to the different laws in the old system. Thus
A decrement on the superior angle is expressed by (p, ¢, q),

which corresponds to Hauy’s symbol p.
q g

On a lateral angle by (—p,q, q¢) corresponding to E? ;
On an inferior angle by (p,— ¢, —q) corresponding to e % :
On a terminal edge by (o, g, ) corresponding to B.é};
On a lateral edge by (p,—g¢,0) corresponding to G%n

An intermediary decrement thus (p, q, ), corresponding
to (AP B? C—f—) and (p,—¢q,—7) corresponding to

(0’ D’FL).

"The symbols of the faces of the primary form are (p, o, o).

7. There is in fact, however, no necessity to suppose the
secondary forms to be produced either by truncation of a
primary one, or by addition to it. If we suppose that the
small rhomboids, of which A 2 was assumed to be made up,
are continued through all the space round the point A, we
may conceive a plane to pass among these, parallel.to PQR.
And this plane will be represented by (p; ¢ ;) indepen-
dently of any consideration of the rhomboid A a or the point
A; for if we take any point, and from it draw lines to the
plane, parallel to the three edges A x, Ay, A z, these three

lines will be as —, ~, —. And any other plane may simi-
y r

q b
larly pass among the small rhomboids, and be represented
by (#'5 ¢"s ). And if we obtain any solid figure contained

by such planes, we may, by supposing those of the small
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rhomboids which lie without this plane to be removed, have
a proper representation of a secondary crystalline form con-
stituted by the aggregation of primary ones.

Before we proceed to the calculations founded on this
mode of viewing the subject, we may observe, that by in-
creasing or diminishing the three indices p, ¢, 7 in any ratio,
the plane represented by them is not altered. Thus(p; q; 7)

(np; nq; nr) (%; %’;’_1),“&& are the same plane. Hence

(p:q; q) is the same as (%—;1; 1) (ps p3o) as(1; 15 0);
and the primary faces are (1,0, 0).

8. Prop. To find the dihedral angle contained between two
planes (p;q;7) (#: ¢; r'), the dihedral angle at the ter-
minal edges of the primary rhomboid being a. '

If there be three co-ordinates any how situated so that the
dihedral angle at the axis x between the planes zy and rz is
«; the dihedral angle at the axis y, 8; and at the axis 2, y:
and if d be the cosine of the angle which a line perpendicular
to the plane yx makes with z; e the cosine of the angle which
a line perpendicular to xz makes with y; f the cosine of the
angle which a line perpendicular to £y makes with z: and if
9 be the angle of two planes whose equations are Az 4 By
4+ Cr=m, Az By4Cz==m: we shall have (see
Transactions of the Cambridge Phxlosophlcal Society, Vol. II.

P.1. p. 200)
AA’
. d2 + +~—
A'B+ AP AC+AC’ B'C 4 BC 5
cos. 6 {""‘""ET"COS-')'— 7 cos,B——-——T— COS. a
- COS. 0 ==
c? zAB 2AC 2 BC
/{ (@ + s+ cos.y — 27 e s R—"7 B «)x ]
) Al B'* Cr2 2 A’ B A'C ' !
’."('3?4"2? e C0S-y — df cOs. B—-—-f—cos a)j
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In the case of the thomboid, since the dihedral angles are
equal, @, 3,9 are equal; and hence also d, e, f are equal.
Hence

AA'4-BB/4+CC'—(A’'B4+AB'+A' C4+AC' 4 B'C4+BC" cos. «
v § (A4 B 402 (AB4 ACHBC) cos.) (A"S 4 B3+ C/3m 2 (A' B4 A'C+B/ Cycos. ) |
And if we put p, q,1,p',q";7 for A, B, C, A', B/, C', we shall
have the angle.

If we have to find the angle of two planes resulting from
the same law, (7' ;') will be a permutation of (p; q;7);
and the denominator of — cos. § will be

P g 7 =2 (pg + pr4qr) cos. e

We shall take examples of the use of these formulea.

Ez. 1. To find the angle made by two planes of carbonate
of lime resulting from the law* (4,— 5, — 5). (Chauz Car-
bonatée Cuboide of Hauvy). .

The primary form of carbonate of lime is a rhomb01d in
which the angle « is 105° 5', and therefore cos. 2 = — .2602.

Two of the secondary planes will be (4;— 5; — 5) and
(— 53 45-—135), and if 4 be the angle contained by these

e COS, § ==

~ 1§ — 51 COS.a 5 — 17 X .2602

— COS. 0 = "‘m; or CosS. 0=m=.0297
= 88°.18.

A variety of other rhomboids may be produced in this and
other substances by other laws. In all cases, if two of the
indices of the symbol be equal, as (p, ¢, ¢), there will only

* That this law is what Havy calls a decrement on the inferior angles of 4in
breadth to 5 in hexght, and is in his notation represented by the symbol e _5..

The angles obtained in the text differ slightly from these given by Hauy in con-

sequence of his having assumed the angle of the primary rhomboid of carbonate of

lime, = 104° .28’ .40", for the convenience of using the cosine = — %
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be three coexistent planes; and if each of these planes be
repeated, we shall have three pairs of parallel planes con-
taining a rhomboid.

If the three indices in the symbol (p, ¢, #) be all different,
we shall have six planes, and repeating each of these, we
shall have a dodecahedron consisting of two six-sided pyra-
'mids. To this case belongs the following example:

Eg. 2. To find the angle of planes in carbonate of lime,
resulting from the law (1,—2,0). (Decrement on the
lateral edges by two rows in breadth. Symbol D*. Chaux
Carbonatée Metastatique. Havuy.)

- Two adjacent® planes are (1;—2;0)(1; 0;—2), and
preserving the same notation as before

— cos. § =‘ﬁ‘fc6§2 = — .2525, 0 = 104° 38'.

By other laws we should find other dodecahedrons and
their angles. But in many cases we have two laws, pro-
ducing two sets of faces, and it may be required to find the
angle between those of one set and of the other.

Ez. 3. To find the angles of planes (2,—1,— 1) and
(1,0, 0). (Decrement by two rows in breadth on an inferior
angle, combined with the primitive faces. Symbol¢* P. Chaux
Carbonatée Imitable. Hauy). '

Adjacent faces* are (2;—1;—1)and 1; o; 0): and

2 2 COS. I 4 cos.
+ tsmme v/ = qoee ; 0= 134" 37

= COS. 6"=1/(6+ 6 cos. a)

9. We proceed now to the inverse problem ; having given
the angles of the secondary crystal to find the law of its
planes. And we shall first suppose the secondary form to

# It will be shown afterwards how we may determine of co-existent planes which
are adjacent.
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be a rhomboid ; in which case, as has already been observed,
two of the indices in the symbol are equal.
Propr. Knowing the dihedral angles of the secondary rhom-
boid, to find the symbol of its planes,
Let (p,q,q) be the symbol of the planes, § the angle of
(P5959) and (g5 25 9)-
2pg+ P —(p* + 2pg 4+ 3¢*) cos. «
P+2¢°—22pg+¢°)cos.a
Here cos. 6 being known, we have a quadratic equation to
determine ¢ in terms of p, which as the proportion q: p only
is wanted, is sufficient.
The equation will be
p" (cos. § — cos. a) -+ 2p q (1 — cos. @ =— 2 cos. « cos. )
¢* (1 — 8 cos. a <} 2 cos. f —2 cos. @ Cos. §) =0

o —COS. 0=

There will be for each value of § two values of —;—, and there-

fore two laws according to which the same secondary form
may be produced. It is to be noticed however, that the direc-
tion of the primitive faces, and consequently of the cleavage
will be different in the two cases.

10. Prop. It is required to find according to what law we
shall have a rhomboid similar to the primary one.

Here § == «: therefore the first sum of the above equation
vanishes, and the remaining part will be verified either by
g==o0, or by

2 p (1 —COS. & — 2 €08.” &) 4 ¢ (1— COS. @=—2 €08." ) == 0, Or g == — 2p,

Therefore (1,0,0) and (1,=2,—2) each give § = 4.
The first indicates the primary face, and the form is the pri-
mary form. The other indicates a decrement by ¢ in height
on the inferior angle, which it appears gives a rhomboid iden-
tical with the primary rhomboid.

MDCCCXXV. O
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11 Pror Knowing the lateral angles made, at the termi-
nal edges, by the planes of any bipyramidal dodecahedron
to find the symbols.

If we have planes (p, ¢, r) they will generally form a bipy-
ramidal dodecahedron, and the six angles at the edges of
each pyramid will be alternately greater and less. If p,q,r
be the order of magnitude of the indices, p being the great-
est, the order of the faces will be that represented in fig.
(see hereafter the section on the arrangement of faces).
Hence faces occur in the order (p; q; 7) (g32: 7) (rs£59)
&c.: and if § be the angle of the two first, and §' of the next,
we shall have
2pg+ 1= (p*+ ¢+ 2pr+297) cos.a:

P+ ¢+rt—2(pg+pr+gr)cos.a
2gr 4+ p*— (P4 r*+2pg+2pr)cos.a

P+ =2 (pgdpr +gr)cos.a
from which equations we have to determine ¢ and 7 in terms
of p.

To eliminate in these equations would lead to expressions
of four dimensions, and it will generally be simpler to find
g and 7 by trial. If we assume for p any number, as 12;
g and r, which generally bear to it very simple ratios, will
in most cases be whole numbers, and may be found by a few
trials. And if the ratios of ¢ and r to p involve quantities
which are not divisors of 1¢, still the trials made on this
supposition will indicate nearly the values of q and »; and by
trying other values for p, we may obtain them accurately.

If two of the indices, as ¢, 7 be negative; the order of
the faces willbe (p; — 73 — @) (=75 P35 — Q) (— g5 —7)
&c. and the rest of the process will be the same as before.

12. Pror. Knowing the angles made by any plane with
two primary planes, to find its symbol.

-— COS. § =

—C0S. ¥ =
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Let (p; q; r)be the plane, and (o, 1, 0) (0, 0, 1) the two pri~
mary planes; 0 and ¢ the given angles .
g = (p - 1) cos. &
v %P"!‘ @+ r*—2(pgtpriqr) COS.u}
7= (p + ¢) cos.
P+ r =2z (pgpr4 gr) cos. a}

& COS. 0 ==

cos. §f = 1/§

whence ¢ and r must be found in terms of p, as in last pro-
position.

Or we may find them directly thus. Since one of the three

_p, ¢, ris indeterminate, assume p*j= ¢~} e 2(pq +;br+q 7)
COS. & = 1.
v €OS. ===t COS. @=—p COS. &3 COS. {f==l=mq COS. —p COS. .
Eliminating, we have

g sin.* & == ¢08. § == cos. a cos. § 4 p cos. (1 4= cos. a);

7 8in? & == c0s. §' 4 cos. & cos. § = p cos. « (1 - cos. a).

If we substitute these values in the assumed equation multi-
plied by sin.*z, viz.

{PQ'I' ¢g+r—2(pq4pr-+qr)cos. u} sin.* e = sin.*a

- we shall have a quadratic equation in p ; and hence p, ¢, r are
found.

13. Prop. To find what laws will give prisms parallel to
the axis of the primary rhomboid.

For this purpose the planes must be parallel to the axis;
and the equation of a plane must be consistent with the equa-
tions of the axis, which are

J=,Z%==2Z.
Let (ps; q;7)be the plane; ~p &+ qy-4rz=o0is the
~equation to it, supposing it to pass through the origin; and
since y=1x,2==x; wehave pad-qr4rr=0 . p=we(q 7).
If r=q,p=-—2q; the planes are (—¢, 1, 1) and the
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secondary rhomboid becomes a regular hexagonal prism.
(Example. Chaux Carbonatée Prismatique. Havy.)

In other cases the secondary form is an irregular hexago-
nal prism, the angles being equal, three and three alternately.

14. Prop. To find the symbol of a plane which truncates
any edge of a given form.

Let two faces (p; q; 7)(p'; ¢'; ') meet, and let (P; Q; R,)
be a plane which truncates the edge formed by their inter-
section : the plane must be parallel to this intersection ; and
the equations to the intersection must be consistent with the
equation P2 4+ Qy 4+ R 2 =o0. Now for the intersection we
have pz 4 qy 4 rz=o0, p2 4 ¢y + r'z=0: whence

(P9 —p9) z=(qr'—qn)z, (Pfr—priz=(@r—qr)y.
Multiply Pz 4 Qy 4+ Rz =0 by (¢r—¢'r) and substitute,
and we have

Plgr—gn4Q(p'r—pr') + R(pg—pg)=o.
And if P, Q, R fulfil this condition, (P; Q; R) will be a plane
truncating the edge as required.

15. Prop. To find the symbol of a plane which truncates
an edge of any secondary rhomboid.

This is a particular case of last Prop. when instead of (p; ¢; )
(#'s ¢'s r'), the planes are (p3q;q)(g;p;q). Hence the
equation of condition becomes

P =29+ Q@29+ R(F—¢)=0
or Pq+Qq¢—R(p+4q)=0
Hence if R=¢, P4+ Q=5 ¢, and with this condition,
(P; Q; ¢q) is the plane required.

Ez. Required the planes which truncate the edges of the
rhomboid produced by the law (3, — 1 —1).

Here p 4+ g ==2; .. the values which may be given to
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P, Q are any number whose sum is 2. Thus (1, 1,— 1)
(2, 0, — 1) are truncating faces.

(This rhomboid truncated by these two planes occurs in
Havy’s Chauzx Carbonatée Progressive. Fig. 41.)

The plane thus determined will always be parallel to the
intersection of the two planes; but in order that it may trun-
cate the edge, it must meet both of them on the really exist-
ing part of each plane. This condition is easily introduced
in each particular case.

16. In order to express, by means of the symbols already
introduced, any crystal whatever, we may write down the
symbols of the faces by which it is bounded ; indicating by
the punctuation the permutations which are allowed. It will
be convenient also to mark the number of the faces which
arise from these permutations. In the rhomboid, when all
the three indices are different, this number will be sizz. When
two are alike, it it will be three. Thus (6) (p, ¢,7) may indi-
cate that the crystal has six faces arising from the law ex-
pressed by (p, ¢, 7) and (3) (p, p, ) may represent a crystal
with three faces arising from the law (p,p,r); which is
what would, according to Havy, be called a decrement on an
angle at the summit.

It often happens that faces in a crystal are repeated ; that
is, that there are faces parallel to one another, one of which
may be considered as a repetition of the other. In that case
we may distinguish them by placing a ¢ before them as a
mulitiplier. Thus ¢ (3)(p, p, 7) indicates a rhomboid pro-
duced by repeating each of the three faces represented by
(p, p, 7). This is in fact the mode in which a rhomboid is
always produced. In the same manner 2 (6)(p, ¢, ) is the
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symbol of a dodecahedron, which results from repeating
each of the six planes (p, g, 7).

§. 2. The Quadrangular Prism.

17. The quadrangular prism may be right or oblique, and
its base may be a square, a rectangle, a rhombus, or a pa-
rallelogram. But in all cases we may take one of its angles,
and make that the origin of co-ordinates ; and taking two of
our co-ordinates along two edges of the base, and the third
along the length of the prism, we shall be able to express
the secondary planes in the same manner as in the case of
the rhomboid. There will however be some additional con-
siderations to introduce, since the edges of the prism may be
of different magnitudes; and its angles not being symme-
trical like those of a rhomboid, we shall no longer have the
same coexistent planes which we had in the former case.

In order to introduce the first consideration, let # and y,
fig. 6, be the co-ordinates in the direction of the edges of the
base, and % in that of the length of the prism. Let the space
bounded by the co-ordinate planes be filled with small
similar prisms, and let their edges in the directions z, y, = be
a, b, ¢ respectively. Let a secondary plane P QR be formed,
by taking away % prisms along the edge , k along y, and
/ along % ; then the lengths of AP, AQ, AR will be ha, kb, /¢
respectively ; and the equation to the plane will be

z y P

Fa + I + i == 1.
If we call -}-:-5, A /?"13’ B; 7‘;, C; we shall have the anglg be-
- tween any two planes by the formula, Art. 8; putting for

@, B, v and for d, e, f, their values. But if we make -h‘— —_

) 3
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+=¢ 7=7,(p;¢;r) may still be tuken for the symbol

of the plane. In this case &, Z, -:—, are the co-efficients of

the equation to the plane, and are to be used for A, B, C in
calculating the angles which the planes make with each other.

We shall use the following terms ; a rhombic prism is one
whose base is a rhombus : an oblique rhombic prism, fig, 8, is
one in which the sides are not at right angles to the base, the
angles of the sides, as BA z, CA 2 being equal. A doubly
oblique prism, fig. 7, is one in which the angles of the sides
at the base BA z, CA z are unequal. Prisms are called square
or rectangular when their bases are so: and when the base is
a parallelogram with unequal sides, and angles not right an-
gles, the prism is called oblique-angled. Besides these we have
a prism which we may call the oblique rectangular prism,*
fig. 9, in which besides the two rectangular ends we have
two sides, as ¢z and the opposite one, also rectangles.

1. The doubly-oblique Prism, fig. 7.

18. In this, since the angles are all different, no one of the
solid angles (A, B, C, D) is similar to another. Hence if a
plane be formed on one of the angles, there is no plane ne-
cessarily formed on another angle; consequently a plane as
(psqs7r)or (p;—q;—r)does not necessarily imply any co-
existent plane, and the symbol is to be written with the mark
(;) between the indices, to show that no permutations are
allowed. ;

Let the edges of the subtractive prisms in last article be «,

* We might consider Bz as the base of prism, by which means it would be a

right oblique angled prism. But the method adopted in the text seems to be more
matural and simple.
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in the direction AB, b in the direction AC, ¢ in the direction
Az. Then putting %’ 1, -:-'- for A, B, C in the formula, Art.

8, we shall have the angles made by secondary planes.

Conversely, knowing the angles made by secondary planes
we may determine A, B, C, as before, and when we have
found in crystals the same substance, various values of
A, B, C, we have

P Ba>p T Aa’
and a, b, c are to be assumed so that ¢:p and r: p may be
numerical ratios as simple as possible.

2. The oblique rhombic Prism, fig. 8.

19. In this case the angles z AB, 2 AC, and the sides AB,
AC are equal; and consequently the two faces z AB, x AC
are symmetrical ; and whatever secondary plane is formed
with reference to one, we must have a co-existent plane cor-
responding to the other. Hence, if we have a plane (p;q; 7)
we must have a plane (¢; p;7) and we may express both
these by the symbol ( p, q; 7) the (,) indicating that the co-or-
dinates x and y may be exhanged, z remaining the same.
And this is true whether p, g, r be positive or negative.

Here having found p, q, and r we have ha, ka, /c, because
a and b are equal, and their values are to be determined as
before.

3. The oblique rectangular Prism, fig. 9.

20. Here the solid angles A and C are similar in all re-
spects, A being contained by two right angles BAC, CAz
and the angle BA %, and C by the angles DCA, ACo, 0o CD
equal to them. Hence whatever plane be formed on A, we
must have a coexistent plane on C, agreeing with it, except
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that the ordinate in AC is in the opposite direction: that is
(p3q;7) (ps—q;7) are co-existent planes. These may be
included in the formula (p; +¢; 7). ‘

4. The right oblique-angled Prism, fig. 10.

21. It is obvious that the opposite angles A and D of the
base of this prism are similar in all respects; and with any
secondary plane formed on one of them, we must have a
co-existent similar plane on the other. That is, we must have
a second plane, when z and y are negative, as they were
positive in the first. Hence (p; ¢;7) (—p;—g¢q; r) are co-
existent planes; and we may express them thus (xps £ q,7)
it being understood in such symbols that the upper signs are
taken together, and the lower together.

5. The right rhombic Prism, fig. 10.

22. Here, the opposite angles A, D are similar, and also
the adjacent sides. Hence with a plane (5 q;7) we have
co-existent planes (— p ;—q; 7)(¢; 3 7)(— ¢ ; —~p ;7). These
may be included in the symbol (+ p, +q; r) the upper signs
being taken together as before, and p, ¢ being permutable as
is indicated by the comma.

6. The right rectangular Prism, fig. 11.

23. Here the four angles A, B, C, D are similar. Hence
(p; q; ) has co-existent planes
(—25¢:7) (P5—937) (—ps=—q5 1)

These may be included in the formula

(fr: 3 as7)

the signs being taken in horizontal pairs.
MDCCCXXV. p
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7. The right square Prism.
24. In this case, besides the co-existent planes which we

have in the last figure, we shall have those which arise from
considering that the sides AB, AC are symmetrical, that is

p and ¢ are permutable. Here the symbol is ( ; P, ‘:*.;.q; r)

this will give eight secondary faces.
8. The Cube.

25. This differs from the last in having the edge in the
“direction z similar to those in z and y. Hence p, ¢, » may be

permuted and the symbol is (i ps % q, ) which gives 24 se-

condary faces.*
There is no necessity to vary the sign of r, for the plane
(p; q;—7)is the same as (—p; —q ;7).
§ 8. The regular Tetrahedron and Octahedron.

26. In this and other cases where the figure is bounded by
more than three planes we shall make three of the primary
faces co-ordinate planes, and -the remaining primary faces
will be expressed by different symbols. Also the co-existent
planes will be differently represented accordingly as they are
on one angle or another, and we shall in each case have to
determine the different forms which will thus occur.

Let Az yz, fig. 12, be a regular tetrahedron, and let A 2,
Ay, A z be three co-ordinates.

* In some cases however, we have only half the number of faces which the law
of symmetry would give. Thus in the case of the pentagonal dodecahedron derived
from the cube, the law is (2, 1, 0); but the faces which occur are (23 1; 0)
(1; 03 2) (03 2; 1) which by the changes of sign become 12. The other 12 which
arise from the symbols (1 ;' 230)(z; 03 1) (0; 1; 2) are excluded.
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Let a plane p ¢ r be formed on the angle A ; then, since all
the angles are symmetrical, we must have a coexistent plane
at any other angle, as 2.

Let Ap="h, Aq=F, Ar=/; andlet 2P=h, 2 Q =4,
#R=17; it is required to find the equation to the plane
PQR.

Draw # M and y K parallel to PQ and we have, if Az ==aq,

xK:xy.%:a%; ~ AK=a(1—7).

Also AM=Ay. f=—t_

Similarly if 2N be parallel to PR, we shall find AN = ——

§ o

b4

Hence the equation of the plane N z M is
® h z
THa—g) s+ —7)s=1;
x t 1 X P
o Ftli—t)r+E—T)r=1
‘And the symbol of this plane will be
LR I, 1 ¥
(55— =)
And the plane PQR is parallel to N 2 M, and will have the

same symbol.
X

If 4 ==p,+==q,7 =7, the symbol of the plane PQR

will be (p; p == g p 7).
In the same way we shall have at the angles y and 2, planes
(g==p3 q5 g—r)and (p —71; gmmr; 7).
But the edges Az, A y, Az are also similar, and therefore
#, ¢, r may be permuted in any manner. Hence we have
these co-existent planes

(207 (Bsp =y p—1), (=P, §, q=7), (r=p, r==q, 7).
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It being understood that in each parenthesis the indices which
are separated by commas may undefgo any permutation.

The first symbol (p, ¢,7) gives 6 planes, and the three
others also 6 each, making in all 24.

If the primary form be known to be a regular tetrahedron,
it is evident that the first symbol (p, ¢, r) must be understood
as implying also the rest. But in order to express all the
planes we may include them in one symbol thus

{(prg: 1) (P —qp — 1) &

the &c. implying the coexistent planes.

27. Prop. To determine the symbol of the planes which
truncate the edges of a tetrahedron.

The plane truncating the edge @ is (0; g, 7): and hence by
last article the general symbol includes the planes

(0:4:7), (¢, 49— 1), (7 —g,7)

which gives 12 planes. We omit (o, — ¢, —r), which is
identical with (o, g, 7).

If ¢ = r the planes are expressed by (o, ¢, q), which gives
g planes ; but in order to truncate the six edges, each is
used twice, and the symbol is 2 (3) (o, ¢, ¢).

The regular octahedron is bounded by the same 4 planes as
the tetrahedron, each being used twice ; and its symbol is

2 (4) {(1,0,0) (1,1, 1)}

Its edges are also parallel to the edges of the tetrahedron,
each being used twice. And any plane which can be deduced
from the octahedron, may with equal simplicity be deduced
from the tetrahedron.

28. Prop. In the regular tetrahedron to find the angle
contained by planes (o, 1, 1).



the angles of crystals. 109

The plane angles of the tetrahedron are 60°; and hence, to
find its dibedral angles, we have to find the angle of an
equilateral spherical triangle whose sides are 60°. If « be
this angle, we have

I

s COS. & == cotan. 60 . tan. 30 == tan.? 3o = -

Let § be the angle of the planes (o,1,1) (1,0,1), and
we have by the formula

I — 3 COS.

— COS. =
2 -~ 2 COS. &

= o because cos. = -;-

Hence the angle of the planes is a right angle. Andin
the same manner the angles made by the other planes will
be right angles. The figure will be a cube bounded by the
3 planes (o, 1, 1) twice repeated.

Irregular Tetrahedrons and Octahedrons.

29. If we have an octahedron composed of two right
quadrilateral pyramids, similar and equal, set base to base,
we shall call this a right octahedron ; and it will be termed
square, rectangular, or rhombic, when the base is so. The
tetrahedron, from which the right rectangular octahedron is
derived, may be called the direct symmetrical tetrahedron ; and
that from which the right rhombic octahedron is derived,
may be called the inverse symmetrical tetrahedron, on account
of properties which will be explained immediately. Also,
all the planes which can be derived from the octahedrons,
may be derived more simply from the corresponding tetra-
hedrons; and we shall find the coexistent planes, and the
angles made by the faces, in the same manner as in the
previous cases.
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§ 4. Direct symmetrical Tetrahedron and rectangular Octahedron.

s0. Let Axyz, fig.13, be a tetrahedron, and let all its
edges be bisected, and the bisections joined by lines drawn
in the faces. We shall thus have an octahedron DEFGHK.
If we consider EFHK as the common base of the two pyra-
mids of which the octahedron is composed, when EFHK is
a rectangle, the octahedron is called rectangular; and when
EFHK is a square, the octahedron is called square.

Let EFHK be a rectangle, the octahedron being a right
one. Then all the faces of the octahedron will be isosceles
triangles, of which DEF, DHK, GFE, GHK will be equal
to each other, and the other four also equal to each other.
Also, it is easily seen that the triangle Ay z has its sides
double of those of EFG, and is similar to it; and similarly
zy % has its sides double of KHG. Therefore the two tri-
angles Ay %, xy % are both isosceles, (y % being the base, )
and are equal in every respect ; and similarly y Az and x A x
are isosceles triangles equal in every respect.

Hence the solid angles at y and 2 are equal in every re-
spect, and also those at A and x. And a plane passing
through A z and through the middle of y z would divide the
tetrahedron symmetrically into two equal portions. Hence
we have called this the direct symmetrical tetrahedron.

We may suppose the solid angle A to be filled with paral-
lelepipeds, the planes of which are parallel to the planes
Azy, Azz, Ayz, inthe same manner as the solid angle
A, fig. 1. And by removing these parallelepipeds according
to any law, as in fig. 1, we obtain a secondary plane, of
which the symbol and the equation may be known from the

law.
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s1. But since the solid angles at A and at x are symmetri-
cal, for every plane at A we shall have a co-existent plane at
z,* of which we shall find the equation.

We may as before suppose Az, Ay, Az, to be co-ordi-
nates, and with any plane p g 7 at A we shall have a co-exist-
ent plane PQR at z, such that z P, 2 Q, xR are equal to
Ap, Ag, Ar respectively.

Prop. The symbol of pqr being (p;q;7) to find the
symbol of PQR.

Let the small component parallelepipeds have the edge in
direction A x =g, and the edges in directions Ay, A z each
= ¢ (these being equal). Also,let Ar=mna, Ay=Az=nc+
And let the plane pqr be obtained by taking away - molecules
in the direction A z, % in the direction A y, and / in the direc-
tion Az. Therefore Ap=ha, Aqg=kec, Ar=1_[c: and the
equation to the plane p-g#,is

z ¥ z
Rttt =

* The parallelepipeds of which the solid is supposed to be made up at z, are not
in the same position with those of which it is supposed to be made up at A. Those
at z are bounded by planes parallel to Az Y> Axz,yaz as those at A are by the
planes which meet at A. If the crystal be divisible according to all the planes of
a tetrahedron or octahedron, there are four different kinds of parallelepiped of
which it may be conceived to be. composed, corresponding to the four angles A, ,
¥ 2z And we may take any one of these kinds with equal propriety. In fact, the
mode of conceiving secondary planes to be formed by removing parallelepipeds, is
an assumption to be considered right only so far as it exhibits the’ dependence of
secondary planes upon the simplicity of the ratios p: y: 7.

+ If we suppose A zy z to be made up of paralleleplpeds, Az, Ay, and Az having
equal numbers of them, planes parallel to xyz will pass through all their angles.
And if instead of parallelepipeds, we suppose that we have only points in space
where the angles of the parallelepipeds would be, the planes which are determined
by any adjacent three points will be the four planes, Avy, Azxz, Ayz, v yz.
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or if p:-;—-,q_—:

prtat+r
the symbol of which is (p; ¢; 7).
Draw y O, x M parallel to PQ, meeting Az and Ay

xO:wy.xP_nc.ha nha

——

2Q T ke =7z
h
.-.AO:Ax-—xO:na(l——-;)
Az Ay  ma.nc __ nkc
AM= A0 — h)""k-—lz'
‘na(l-—-z-

Similarly if N be parallel to PR, AN = ;—‘_-ifh

Hence the equation to the plane x M N is
x h z
st 0— )+ 0 —7) H=1
orpo+(p—9) ¢+ (p—r)Z=pn
and the equations to planes p ¢ 7 and PQR are
pe et tae=1;
prt =+ (p—r)s=m
and their symbols are (p; ¢;7), (ps p—q; p—71).

. Then

Also the edges Ay, A z are symmetrical ; and hence we have

two other co-existent planes (p; 7; ¢) (p—r; p—q).

These are included in the formula {( 2541 (p; p—q, p-—-r)}

The solid angles at y and 2 are also symmetrical ; and a
plane being supposed to be formed at y as before, we must

have a co-existent plane at z. Let p' ¢ ' be a plane
off the angle y, and b being the edge of a molecule

cutting
in the

direction y 2, let y p', y¢', yr'=hb, ke, I ¢ respectively, and
let z P, zQ, xR'=yp', y¢, yr' respectively. Then p"¢ '
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and P’ Q' R’ will be co-existent planes; and the condition of
their co-existence is included in the preceding symbol.

The quantities a,b,c are as na, nb, nc,that isas Az, y=
and Ay. Or, referring to the octahedron in fig. 13, they
are as FH, FE, and FD.

The square Octahedron.

32. When EFHK, fig. 13, is a square, Az, yz will be
equal, and the solid angles at y and z will be symmetrical to
those at A and z, and will be similarly affected. Hence for
a plane at A there will be co-existent planes at y and =.

Prop. To find the symbols of co-existent planes in this case,

Ifwetakez P, z Y, s R\,=yp, y¢', yr' ;= Ap, Aq, Arre-
spectively, we shall, as in last article, find the equation of the
planes p' ¢' 7', P Q' R’ to be

kY oz k
(1—7) s+ L+ (1— ) s=m
Y n 3 ]
=7+ (=) L+ E=mn
and since p=—, = %, r—._—_—;-, these are equivalent to
G—n<+95+@—n==7
@—nz+@—D%s+q7="7"
Hence with a plane (p; ¢; ) we have co-existent planes
(g—7395 g—p)and (g—7: 9—p: q).
But we have also a co-existent plane (p; 7; q) and therefore
also (r—qsr;r—p)and (r—gq;r—p; 1)
Hence in the square octahedron we have co-existent planes
which may be included in this symbol

{8307 (3 p—1,p—4) (g—73 ¢, q—p) (r—q5 7, 7 —) }
All which are implied in (p; ¢ ; 7).
MDCCCXXV. Q
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33. Prop. Having given the symbol of a plane derived
from the tetrahedron, to find the manner in which it cuts the
octahedron, Fig. 13.

Let PQR be any plane at the angle A; and let PQ meet

DKandDDE in Sand T -~ DS= 2248 _pp . E_DP Lo

AP >
And drawing QL parallel to DE, DF = QLPLD P
Also QL . AQ and PL=AP — AL =AP — AQ. 2% = = ha
—ke. L=(h—Pk)a
Q ke — ¢

In the same way we find the portions cut oﬁ from DH and
DF : and hence it appears that a plane (p; q;r) cuts off
from the four edges, which meet at the vertex D of the pyra-
mid, lines which, parallel to the edges in the directions Ay,
Az, xy, xz,are as

11 1 1
— i
>y

7’ r’g—p r—p

In whatever manner the plane DEF is cut by the plane
PQR, the plane DHK will be similarly cut by the co-existent
plane at z.

34. Hence, knowing the law by which a secondary face is
derived from the octahedron, we can find its symbol.

The primary form is a square octahedron; to find the
symbol of the face *E* (Ex. Zircon unibinaire, Havuy).

This plane is drawn cutting off the angle E, in such a man-
ner th 't the portions cut from E ¥, E G are double of those
from EK, ED respectively ; and the section on the face EFG
parallel to FG or to Ay,

Since the part cut from EG, parallel to A z, is double of that
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from ED, parallel to xy, and is in the negative direction,
I 2
72—'9_—7 O pmeq=2r.

Also since the section is parallel to Ay we must have g=o.

Hence (2 ; 0; 1) is the symbol required. And the co-ex-
istent planes are

(2;0,1,(251,2)(—1;0,—2} 1;—1, 1)
each of the parentheses gives two planes, and hence we have
8 arising from this law.

35. To find the angles which these planes make with the
planes of the octahedron.

Example. Zircon unibinaire, Havy.

In the square octahedron, which has been considered as the
primary form of zircon, the angle of two adjacent faces of a
pyramid is 123° 15', and the angle of two opposite faces
measured over the summit is 95° 40". (PHiLLIps).

Hence the dihedral angle at Az, which is () the angle of
the planes EFK, FDH, is 95° 40'. And (g,) the angle at Ay
is the angle of DEK, FEG, and is therefore the supplement
of the angle of HFG, EFG, and it is therefore = 56> 45'. In
the same manner (y) the dihedral angle at Az is 56° 45"

In order to apply the formula of Art. 8, we must find the
valuesof d, ¢, f. Let XYZ, fig. 15, be a spherical triangle
made by describing a sphere with center A, meeting A z,
Ay, Azin X,Y,Z. Then if XD be drawn perpendicular
to YZ, d = sin. XD, similarly if YE be perpendicular on
ZX, e=sin. YE, and f==e.

Now by Narier’s rules, since XYD = 56° 45, and YXD
==%(95° 40")==47° 50, 7. cos. 56° 45’ == cos. XD . sin. 47° 50
& d==sin, 42° 11; d = .6780125.
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Also r.cos. XY==cotan. 56°45'.cotan. 477° 50' . £y=43° 37’
and YXE = 180 — 90° 40' == 84° 20’
~7.8in.YE=5sin.XY.sin.84°20 .. e==sin. 43°21’; e==.6864532

The two planes of which we have to find the angle, are
(2;0;51)(1; 03 0).

Hence by the formula, Art. 8,

3 __ cos. B
— COS. b = d S — 2 f—d cos. B
A ) e
To find 6, let tan. o =zf;l"si“f:‘;s'6 = d:h{B — cotan. §; and

tan. w
S€C. w

By the values above given, we shall find » = 60° 43’ and
&~ 0==150°44". The value given by Mr. PuiLLIPs is 150° 12".
It may be observed, that (2; o; 1)is the side adjacent to
the primary plane (1; 0; 0); and that we obtain sides adja-
cent to other faces by taking corresponding co-existent planes
from the formula in Art. ge. v
Thus the primary faces (1 ; 0 ; o) have adjacent secondary
faces (2; 05 1)and (2; 1; o).
The primary faces (0; 1; o) have adjacent (1; 2 ;0)and (1;—1; 1)
The primary faces (0 ; 0; 1) have adjacent (1; 03 2)and (1; 15— 1)
The primary faces (1 ; 1 ; 1) have adjacent(2; 1 ; 2)and (2; 2; 1)
Here instead of (—1; o: —¢2) &c. we have written (1; o; 2)
&c. which represents the same plane. .

=sin. w. .. 6 =90° 4= .

we shall have, — cos. § =

§ 5. Inverse symmetrical Tetrahedron and rhombic Octahedron.

86. Let Axy =, fig. 16, be a tetrahedron ; and let its edges
be bisected, and an octahedron formed as before. In this
octahedron, let EFHK be the rhombic base; and the two
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pyramids which compose the octahedron being right ones
and equal, it is evident that the four lines DE, EG, GH, HD
will be equal, and the four lines DF, FG, GK, KD. Now
A z is double of FH, and zy of HK. Hence Ar=y z.
Similarly Ay=x 2, and Az=xy. Hence it appears that
the four triangles which form the sides of the tetrahedron
have their sides equal respectively, and are therefore equal
and similar. Hence the four solid angles A, z, y, %, are con-
tained by equal angles, and are symmetrical. Thus the
angles x Ay, yAz, 2 Ax are equal to Axz, yrz, Azy.
And this tetrahedron may be called an inverse symmetrical
tetrahedron.

From the law of symmetry, whatever plane is formed at
the angle A, we must have a coexistent plane at each of the
angles @, y, z, the equal and opposite edges being similarly
affected.

37. Prop. A plane (p;q;7) being known, to find the co-
existent planes. Fig. 17.

Let Ax,Ay,Azbena,nb,nc.
Ap,Aq,Ar=nha, kb,lc; and p=
~zP, xQ, zRareha, kb, lc.

Draw y O, x M parallel to PR.

1 i I
,q=-]‘—,l=7°

>|

zP ha __n

h h
zO0=zy.s=ncm== la;AO—._-:na(l-—-—l-)

AM=Az . 2f=20_—_20
] 7 1 - —p—-
Similarly if z N be parallel to PQ, AN =—2— = -
t—-— - 3
Hence the equation of the plane x NM, which is parallel

to PQR, is

nc
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=2 Gt —L)E=1 opt  (p—DLd(p—g) Z=np

and its symbol is (p;p—71;p —g).

In the same manner the angle y gives a plane (g—7; ¢ ; g—p)
and the angle z a plane (r—gq ; r=—p ; 7).

Hence the co-existent planes are
(B5q:0(psp—r3p—h(g—713¢59—p) (r—q37—p37)

These four planes would truncate symmetrically the four
faces of one of the pyramids which compose the octahedron,
and planes parallel to them would truncate similarly the
planes of the other pyramid.

38. Prop. To find the portions cut from the edges of the
octahedron by the plane (p;¢;7).

Let the plane P, Q, R, fig. 16 and 18, meet DK, DE, DF,
DHin S, T,U,V. Draw QL parallel to DE. Then

DS:DP.:“_Q:DP.’:&!’_—_DP.ii

QL= AQ < xy——-kb —=ke, AL__AQ kb +=ka;PL=(h—Fk)a
QL 2. <
DT =DP. ——_.DP(h_k) ___DP i
Similarly DV and DU would be DP.£ .2 and DP .t .-
Hence DS, DT, DU, DV are as— . b, —— ¢, —— b, = ¢,
¢ g—pTr—p ’r
Hence for the four co-existent planes the edges cut off are
respectively as b e b <,
¢’ q—pr—q r°’
b _c_ b c
r—=p 7’ ¢ g=p’
b, b e
¢’ 1’ r—p ge—p’
LS
re=p g—p ¢’ T’
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The calculations would be nearly the same as in the case
of the square octahedron, article 85. We should have to
calculate d, e, f from the angles of the octahedron. Thus in
sulphur, according to Mr. PuiLLips (p. 3861) we have inci-

dence of
GEF on GEK=106°30; .. angleatA x="73°g80=1¢

GFHon GFE= g5’ 5; ..angleat Ay=094°55=2§
GHF on DHF = 148°25; .. angleat Az =36°385 =«
And if we construct a triangle, of which the three angles are
«, 3,9, and draw arcs from these angles perpendicular on
the opposite sides, the sines of these arcs will be respectively
d,e,f. And by first finding the sides of the triangle by

spherical trigonometry, these may be calculated.

§ 6. The regular triangular Prism. Fig. 19.

89. This is a right prism, having for its base an equilateral
triangle. It includes the regular hexagonal prism by re-
peating the lateral faces. ‘

Prop. To find the co-existent planes.

By the law of symmetry, for every plane on one angle A,
we must have co-existent planes on z,y. Letpqr be any
plane whose symbol is (p; ¢q; 7), and the lines Ap=nh,

Ag=kt, Ar=1I, when p::—;;—, q:-—;-c-,r: —;—- Then we

shall have a plane PQR where 2 P=%, Q=% xR=/
Draw x M, y O parallel to PQ.

~20=zy. T=qifAz=sy=Ay=1.

AM:A.l‘él.—_—_ ! == ! =L
R e
k P
Similarly if z N be parallel to RP, AN =Az. 28 =L = 2.

Hence the equation of the plane x MN is '
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x4 ”p—'ﬁy—--;—z-_—-_l X pr+4 (p=—qQ)y=——rz=>p.
=~ its symbol, or that of PQR, is (p; p =g ; ==7).

Similarly, at y, we shall have a plane (q—p; ¢; —7).

Also, since the edges Az and Ay are symmetrical, we
have a plane (¢; p; 7). And hence the co-existent planes are
(23957 (P3P —=7)(q—P3 0 =7)(0:237) (¢ ¢ —p5—7)
(p=—q; ps;—r). Which may be included in the symbol

$@q57) (Pp—q3—1) (@ g—p i —1)}
§ 7. The rhombic Dodecahedron.

g0. If we take a regular tetrahedron w x y %, fig. 20, and
from its centre of gravity A draw lines Aw, Az, Ay, Az,
the angles made by any two of these lines will be the same.
And by taking planes passing through any two of these
lines we shall have six planes symmetrically disposed, each
of which will make an angle of 120° with four others. A
figure bounded by planes parallel to these planes, each taken
twice, and symmetrically disposed, will be the rhombic
dodecahedron.

We may consider the three lines A x, Ay, A % as axes of
co-ordinates; and any plane pqr which cuts them must
have co-existent planes cutting any two of them and A w.
Also, as the lines Az, Ay, Az are similar, in a plane (p,q,7r)
we may present the indices in any manner.

41. Prop. To find the symbols of co-existent planes in the
rhombic dodecahedron.

Let a plane p g7 cut w A produced in O. Let x,y, 2 be
the co-ordinates of the point O. The equations of the line
Aw are y=x, z=ux.. And if the equation to the plane
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pgqrbepx + qy -4 rz=m, we shall have the co-ordinates

of the point O by combining these equations. Hence we
m
PEYET
But if the co-ordinates z,y, 2z be projected upon AO, we
shall have AO=A z cos. x AO + A y cos. y AO +4 A 2 cos.

z AO. And since cos. £ AO = cos. y AO=cos. 2 AO =1,
w+y+z . »
A0= A= p+q+r

Now let ple 4 q'y = 'z ==m be the equation to a plane
- which cuts Az, Ay, Aw in the same manner in which
(p;q;7).cuts Az, Ay, Az. Therefore the portion cut off

‘havepr 4 gqrx 4 re=m,or r=

fromry A produced will be T Also the portions from

‘A x and Ay, are

L p=p.q¢=q 7' +‘1'+7‘="‘T r=—ptqtr

Hence if (p;q;7) be a plane (p;¢;—p 4 q 1) is a co-
existent plane.

Also the axes of x,y, % being symmetrical, (p;q;7) has

'~ co-existent planes (p,q,7). And making —p 4 ¢ + r=3s,
we have the planes
(297 (24, 9) (275 9) (475 9).

Each of these symbols gives six: permutatlons, so that we
have in all 24 co-existent planes.

§ 8. On the arrangement of secondary faces.

42. When crystals have faces determined by the laws con-
sidered in the preceding pages, they will have the form of
polyhedrons bounded by polygons; and in order to deter-
mine the dihedral angles, &c. it will be necessary to know

MDCCCXXV. R
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in what order the faces occur, and which are adjacent. This
may be done in the following manner :

Let AI fig. 21, be any parallelepiped of which the edges
Az, Ay, Az area, b, c. Let an ellipsoid be described, of"
which the center is I, touching three planes of this parallele-
piped in D, E, F: If we suppose any secondary plane, de-
duced from this parallelepiped, to be drawn so as to touch
the ellipsoid in P, the situation of the points P will determine
the position of the planes. Let Az 4 By « Cz==m be the
equation to the plane. The equation to the ellipsoid will be

(@=—zx)* (b=y)* ¢ (c=2)* __
at + 2 + e 1.

And that the plane may touch the ellipsoid, the differential
co-efficients ( ) and ( ) must be the same in both. Hence

(d]/} . A b (a—-m) (d z) ______“_(f:A_: "—""C";, (a—=z)

=—3F="7 (b—y)’ dz] — a (c=z)"

Qo= 3 b—- Qo T [
Therefore ——; = Bbf s =

And substltutlng in the equation to the ellipsoid we have

Bﬁ bZ CZ Z
Lla—a) + B a—2) 4 G a—a2f =1

Aa
e a_x-:q/(A"az-l-sz"ﬁ-Czcz)
- b — Bé
oK) _—-y_—'v(Aza2+B2b2+Cz .2)
Cc

ad c—2= s maTBri o
Knowing the position of the points P for all the planes, we
have the polyhedron, on the supposition that it is made such
that the ellipsoid can be inscribed in it; which is always pos-
sible by supposing the planes to move parallel to themselves
till they touch it.
We shall see more clearly the position of the points P if
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we suppose it to be determined by angular distances like the
longitude and latitude on a globe, assuming as the axis of the
ellipsoid that about which the figure is symmetrical.

48. (1) In the rhomboid. Here Ar=Ay=Az=1,
suppose IA be taken as the axis; and a plane API being
drawn, let the angle between this plane and IA x be called
the longitude (a) of the point P'; and let the complement o
AIP be called the latitude (x) of P.

Let the co-ordinates of P be called X,Y,Z. Then the
plane API has a point A, of which the co-ordinates are o, 0,0;
‘a point I, of which the co-ordinates are 1, 1,1 ai.point P, of
which the co-ordinates are X, Y,Z. Hence its equation is
Y—Z)r 4+ (Z—X)y 4+ (X —Y )z=o0. And the equation
to IAx is y—=z==o0. Therefore by the formula for the angle

of two planes, Art. 8,
—2X4 Y4 Z—(2X—YuZ)cos.

v { 2((Y e Z) 4 (Z = X) b (X = V)2 2(XP  Y* 4 22 = XY = X Zm Y Z) cO5. ) f

e COS. A =

If the symbol of the plane be (p;q; r) its equation is
px4qy +rz=m; and hence

pa , . L
g—X= Tt A and similarly for Y and Z. Hence
(2p—g—7) (1 4 cos. a)

2V {(p‘+q“+r’—pr1——pr-qr) (1 +cos.a)} ’

= zx/(P‘+q‘-£r"-q—p;-pr——qr) V1 - c0s. a).

To find x; if we draw PM perpendicular in Al and call
IP, 7, we shall have IM =7 sin. w, and g will be greater  as
IM is greater. Now if IM, NO, OP to the co-ordinates of
P measured from I, and if we draw perpendiculars from
N and O on IA, we shall see that IM = (2 — X) cos. ¢ +
(e—7) cos. ¢ = (@ — Z) cos. { where {is the angle which Al
makes with A z, Ay or A z.

COS. A =




124 Myr. WHEWELL on calculating

- Pt
78I == e ey - COSH ¢

By these formula we may determine the arrangement of
any set or sets of secondary faces. Thus if we have a symbol
(p,q,7)in which p > ¢, ¢ > r; we have 6 faces. The expres-
sion for 7 sin.  is the same for all : hence they are all at the
same distancc from the summit B. And cos. A will be greater
as @ pemmg—=1is, OF a$ g p— ( p=4-q 1) is so. Consequently
the values of cos. A taken in order of magnitude will corre-
spond to (p; ¢;7)(q;237)(r; ps q). The other three values

‘be the same, viz. (p;7;q) (¢;735p) (5 ¢; p); and indicate
longitudes on the other side of A .

The arrangement of the planes is represented in fig. 22.

It is to be observed that as the order of the first index
is p, ¢, 7, beginning from x, the order of the second index is
P, q, r beginning from y, and of the third p, ¢, 7, beginning
from z.

44. (2) In the Prism. Let the line IF, fig. 21, parallel to
A %, be taken for the axis of the ellipsoid ; and let the posi-
tion of P be determined by () the longitude which is measured
by the angle between the planes FID and FIP; and by W
the latitude, the angle PIN.

It is evident that tan. a will be greater as I}Ig is greater.
Let (p; q; 7) be the symbol of the plane, and its equation will
be 2 o 5 - =

And the values of 10, ON, NP, will be

pa gb - rc
v (pz +q2. +r1-)’ V(pz + 72+T’I-)9 ‘/ (p‘2.+ YZ _*_ 7.1-)'
g

: qb :
Hence tan. a will be greater as f—)—a is greater; or as — is

greater; because & and b are constant for the same substance.
rce

Also sin. wis greater as PN is greater ; thatis, as TFEET
is so.
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And hence we may arrange the faces in the order of their
longitude and latitude.

We might in the same manner find the position of the
planes for other primitive forms, but what has been done will
generally be sufficient. ‘

§ 9. On the angles made by edges.

45. If we have two lines referred to any co-ordinates, of
which the equations are y=Ax, z=Bx; y=A'x, x=B'x;
and if the plane angles of the faces be known; viz. the angle
which x makes with y=¢, the angle which x makes with
z=1 and the angle which y makes with z == ; we shall
find 0, the angle which the two lines make with one another,
by the formula,

o8 = 14 AA'4 BB 4 (A 4 A’) cos. ¢ + (B + B’) cos. + (A’ B  AB’) cos. w
' v (1+A*4B*+ 2 Acos. ¢ +2Bcos. 4 2 AB cos. w) (14 A%4+B%+42A’ cos. o2 B cos. |-+ 2§A’ B cos. w)
(See Trans. of Camb. Phil. Soc. vol. ii; P. I; p. 202.)

When we know the symbols of the planes, the co-efficients
A, B will be found by eliminating y and =z in the equations of
the planes where intersection is considered.

Ez. In a rhomboid it is required to find the angles made
by the opposite edges of a pyramid formed of planes (p, ¢, 7).

By referring to fig. 22. it will be seen that opposite edges
are those which are produced by intersections of planes
(25950(sps7)and (g7 p) (75 5 )

~ To find the equation to the first line we have
prdqy-trz=o
qr—4py+rz=o

e,
r

whence y=ux, 2=
In the same manner we should find for the second line

—_— A
Y=, B —e
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Substituting for A, B, A, B'in the formula, we have, since

p={=u0 -
l+x+_@ﬂ_(l’f_)+zcos¢ (p-:'q+q_l-r)cos<p (_j'__ 9+7)cos¢
coS. 8= o
(114 (p+q) +2 cos. p— +qcos o— 2p+ €os. qo) (1414 (7+ n? ~— } 2 COs. ¢—-zg--;-cos gn—-—zq—j-z-)—cos [

_ 3pr+pyt+ ¢ Her—z +r+pq+q7——pr)cos-¢

TVt +2rr—2(p+ g—r)rcos.@)) (§+1)* + 2p*—2(q+ r—p)pcos. §)
And if we take any other opposite pairs of planes,(p; r; ¢)
(g5 75 p) and (g5 p37)(rsps 9)s ox (3 ¢ 2)(rs p3 g) and (p373.9)
(5 q;7); we shall have the same value for 6. Hence this
angle may be used as the characteristic of a pyramid pro-
“duced by any such law from a rhomboid : and consequently
of a dodecahedron resulting from repeating the faces of the
pyramid. Itis employed in this manner by Bour~on in cha-
racterising the dodecahedrons of carbonate of lime.

§ 10. Recapitulation.

46. It may be useful to collect in one view the results of
the foregoing investigations. If we take a solid angle of the
primary form of a crystal for the origin, and the three edges
for three co-ordinates, any secondary plane may be obtained

- by removing a pyramid, the edges of which consist of 4, %, /,

molecules respectively. If we make p= —]"-, q ::—;-‘-, r== ';—,;
the secondary plane may be represented by (p; ¢q; 7) which
will express its position without determining its distance
from the origin: p,q,r may be positive, o, or negative.
By the law of symmetry with respect to the angles and edges
of primary forms, if one secondary plane exist, certain others
must also exist, which are hence called co-eaistent planes.
Some of these are obtained by permuting the order of the
letters in the symbol (p, ¢, 7); and the instances where this
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permutation is allowed may be distinguished from those
where it is not, by separating the letters p, ¢, 7 in the former
case by a comma, and in the latter by a semicolon. The
other co-existent planes in each primary form will be seen in
the following table.

Table of planes which exist if (p; ¢ 7) exist.

In the rhomboid - - - - (psq,7)
The doubly-oblique prism - - (psqs7)
The oblique rhombic prism - - (prq:7)
The oblique rectangular prism - (ps+q;7)
The right oblique-angled prism - (+p;+q;r,
The right rhombic prism - - (p, +q;7)
The right square prism - - +  +
ght square p ( inien
The cube - - - - + o+
( ; ¥ E q, 1)
V2 ¢:7)
The regular tetrahedron and regular oc- | (p, p — ¢, p —71)
tahedron - - - ;(q —p, ¢, g—7)
J (r—p, r—q, )
1(p3g:7)
The direct symmetrical tetrahedron and |(p; p —7, p —¢)
square octahedron - - (q—rs5q, q—p)
J (r—gqsr—p,7)
1(psq57)
The inverse symmetrical tetrahedron ((#37—73p~—q)
and rhombic octahedron. - - (@—riq:9—p)
Jr—gir—p3 7




128 - Mr. WHEWELL on calculating

The regular triangular prism ; - (prq:7)
(prp—q:—7)
(¢ 9—2:—7)
The rhombic dodecahedron; - - (p,9,7) ;
(5 —p+9+7)
(6 —p+q+17)
| (—2+9+747)
A crystal may be represented by uniting the symbols of
the planes of which it is composed. And it will be conve~
nient to represent by a figure in brackets thus (6), the num-
~ ber of faces which arise from each symbol. Also frequently
the crystal has parallel planes; in which case one of them may
be considered as a repetition of the other ; and the plane thus
doubled may be indicated by writing a 2 before it. Thus
the form of borate of magnesia, called by Havy magnesze
. borateé defective, may be thus represented
Primary ; a cube.
Secondary’; 2(s)(1, 0, 0)+ 2 (6)(+ 1, 1, o)+ (&)(£ 1, 1, 1)
Indicating — a cube 2 (3) (1, 0, 0), formed by repeating
- each of the primary planes (1, 0, 0); ;
Modified by 6 pairs of planes (+ 1,1, 0); truncatmg the
edges;
And by 4 planes truncating angles, which are not repeated.
Hence the opposite angles are not symmetrically affected.
The situation of planes with respect to each other, may be
- determined by assuming a certain point as the pole of the
crystal, and measuring the latitude and longitude of the cen-
tre of the plane with respect to this pole. If we suppose an
 ellipsoid of which the three axes are as the three edges a, b, ¢
of the primitive form, we may suppose secondary planes to
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be in their natural position when they are drawn so as to
touch the ellipsoid ; and we may consider as the centre of
the face, the point of contact. The latitude and longitude
(» and a,) of this point, are given by the formula which follow.

In the rhomboid, the axis of the rhomboid being the axis
of the crystal

. . zp S g —
cos. A varies with
V(PP+ @+ r*~pg—pr—gqr)
. ptg+r
sin.
* v (P+ @+ )

In the prism, the axis being the axis of the prism

tan. A varies With‘—g—
r
vr+e+) .
And hence the situation of the planes is known. Also if any
of the planes, instead of touching the ellipsoid, be nearer to
or farther from the centre of the crystal, the order of the
planes will not be altered. , :
Having thus determined what planes are adjacent, we find
the angles which they make, by the formule given Art. 8.
In the rhomboid (p3 45 7)(; q; 7) being the planes, § their
angle, and « the dihedral angle of the primary form,
PP+ 90+ rr'— (Pg+ gp+ P +'p + g + 1'g) cos.
V(P + g+ —2pgtpr+ qr cos.a) (0 + ¢*+ 7~z p'g'+p 7'+ ¢'7 cos.a)
This is true also for the tetrahedron, and for the right rec-
tangular prism, making cos. e ==o0. In the other cases we
have a formula involving the three dihedral angles of the pri-
mary form.

sin.

e COS. § =

-We can also find the angles contained between any two
edges by first finding the equations to the edges, and then
employing a formula given, p. 125.

MDCCCXXV. S
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The inverse problem, knowing two dihedral angles of the
secondary figure to determine the symbols of the planes, is
resolved by the same formula. In the case where the angles
made with the primary planes are given, we have a direct
solution. In the other cases we find the indices of the symbol
of trial ; and if the limits of the present paper allowed it, it
might be shown how ‘wef might, after some trials, proceed
directly to find the law.

P.S. The greater part of the formule in the preceding
pages were calculated before my notice was directed to a
- paper by Mr. Levy, in the Edinburgh Philosophical Journal
for April 1822. Mr. Levy there employs the principle which
is the basis of the investigations now given, viz. the mode of
expressing a secondary plane by means of its equation to
three axes coinciding with the edges of the primitive form.
From this principle he deduces, with great simplicity, the
law of a secondary plane in a particular case; viz. when the
intersections of that plane with two known planes, are parallel
to their intersections with two others.* In order however to
deduce the general formula, a new and different series of
theorems is necessary, as appears in the course of this paper.

*. It may be observed, that the resuit in- this case is easily obtained from the for-
mula in Art, 14.
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